Which times on a digital clock have a line of symmetry? Which look the same upside-down? You might like to try this investigation and find out!

On Planet Plex, there are only 6 hours in the day. Can you answer these questions about how Arog the Alien spends his day?

A lady has a steel rod and a wooden pole and she knows the length of each. How can she measure out an 8 unit piece of pole?

Mr. Sunshine tells the children they will have 2 hours of homework. After several calculations, Harry says he hasn't got time to do this homework. Can you see where his reasoning is wrong?

Investigate the different distances of these car journeys and find out how long they take.

Twizzle, a female giraffe, needs transporting to another zoo. Which route will give the fastest journey?

What happens when you add the digits of a number then multiply the result by 2 and you keep doing this? You could try for different numbers and different rules.

During the third hour after midnight the hands on a clock point in the same direction (so one hand is over the top of the other). At what time, to the nearest second, does this happen?

In this section from a calendar, put a square box around the 1st, 2nd, 8th and 9th. Add all the pairs of numbers. What do you notice about the answers?

This article for teachers suggests ideas for activities built around 10 and 2010.

Start with four numbers at the corners of a square and put the total of two corners in the middle of that side. Keep going... Can you estimate what the size of the last four numbers will be?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

I was looking at the number plate of a car parked outside. Using my special code S208VBJ adds to 65. Can you crack my code and use it to find out what both of these number plates add up to?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Investigate what happens when you add house numbers along a street in different ways.

Investigate the totals you get when adding numbers on the diagonal of this pattern in threes.

These two group activities use mathematical reasoning - one is numerical, one geometric.

Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?

A game for 2 people. Use your skills of addition, subtraction, multiplication and division to blast the asteroids.

Can you substitute numbers for the letters in these sums?

In sheep talk the only letters used are B and A. A sequence of words is formed by following certain rules. What do you notice when you count the letters in each word?

These sixteen children are standing in four lines of four, one behind the other. They are each holding a card with a number on it. Can you work out the missing numbers?

Can you work out how many flowers there will be on the Amazing Splitting Plant after it has been growing for six weeks?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Can you arrange fifteen dominoes so that all the touching domino pieces add to 6 and the ends join up? Can you make all the joins add to 7?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

How many starfish could there be on the beach, and how many children, if I can see 28 arms?

Where can you draw a line on a clock face so that the numbers on both sides have the same total?

Vera is shopping at a market with these coins in her purse. Which things could she give exactly the right amount for?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Here are the prices for 1st and 2nd class mail within the UK. You have an unlimited number of each of these stamps. Which stamps would you need to post a parcel weighing 825g?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

If the numbers 5, 7 and 4 go into this function machine, what numbers will come out?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?