Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?

Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Find the sum of all three-digit numbers each of whose digits is odd.

This task follows on from Build it Up and takes the ideas into three dimensions!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?

There were 22 legs creeping across the web. How many flies? How many spiders?

Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?

Can you substitute numbers for the letters in these sums?

Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?

Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?

Can you make square numbers by adding two prime numbers together?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Ben has five coins in his pocket. How much money might he have?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Number problems at primary level that require careful consideration.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

This challenge extends the Plants investigation so now four or more children are involved.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.