Fill in the numbers to make the sum of each row, column and diagonal equal to 34. For an extra challenge try the huge American Flag magic square.
There are over sixty different ways of making 24 by adding, subtracting, multiplying and dividing all four numbers 4, 6, 6 and 8 (using each number only once). How many can you find?
Fill in the missing numbers so that adding each pair of corner numbers gives you the number between them (in the box).
If each of these three shapes has a value, can you find the totals of the combinations? Perhaps you can use the shapes to make the given totals?
Using 3 rods of integer lengths, none longer than 10 units and not using any rod more than once, you can measure all the lengths in whole units from 1 to 10 units. How many ways can you do this?
Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.
The clockmaker's wife cut up his birthday cake to look like a clock face. Can you work out who received each piece?
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?
This task follows on from Build it Up and takes the ideas into three dimensions!
Arrange three 1s, three 2s and three 3s in this square so that every row, column and diagonal adds to the same total.
Find a great variety of ways of asking questions which make 8.
This challenge focuses on finding the sum and difference of pairs of two-digit numbers.
Find out what a Deca Tree is and then work out how many leaves there will be after the woodcutter has cut off a trunk, a branch, a twig and a leaf.
Investigate the different distances of these car journeys and find out how long they take.
The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?
There were 22 legs creeping across the web. How many flies? How many spiders?
Where can you draw a line on a clock face so that the numbers on both sides have the same total?
Mrs Morgan, the class's teacher, pinned numbers onto the backs of three children. Use the information to find out what the three numbers were.
This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?
Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?
On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?
There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.
Well now, what would happen if we lost all the nines in our number system? Have a go at writing the numbers out in this way and have a look at the multiplications table.
This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?
Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.
Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?
Cassandra, David and Lachlan are brothers and sisters. They range in age between 1 year and 14 years. Can you figure out their exact ages from the clues?
Sam got into an elevator. He went down five floors, up six floors, down seven floors, then got out on the second floor. On what floor did he get on?
Can you score 100 by throwing rings on this board? Is there more than way to do it?
In how many ways could Mrs Beeswax put ten coins into her three puddings so that each pudding ended up with at least two coins?
How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?
Woof is a big dog. Yap is a little dog. Emma has 16 dog biscuits to give to the two dogs. She gave Woof 4 more biscuits than Yap. How many biscuits did each dog get?
Can you draw a continuous line through 16 numbers on this grid so that the total of the numbers you pass through is as high as possible?
What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?
Find the next number in this pattern: 3, 7, 19, 55 ...
What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.
Number problems at primary level that may require resilience.
How would you count the number of fingers in these pictures?
This activity is best done with a whole class or in a large group. Can you match the cards? What happens when you add pairs of the numbers together?
Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.
Watch this animation. What do you notice? What happens when you try more or fewer cubes in a bundle?
Skippy and Anna are locked in a room in a large castle. The key to that room, and all the other rooms, is a number. The numbers are locked away in a problem. Can you help them to get out?
Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?
This group activity will encourage you to share calculation strategies and to think about which strategy might be the most efficient.
Use your logical reasoning to work out how many cows and how many sheep there are in each field.