This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Can you work out what size grid you need to read our secret message?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Take any pair of numbers, say 9 and 14. Take the larger number, fourteen, and count up in 14s. Then divide each of those values by the 9, and look at the remainders.

Find the highest power of 11 that will divide into 1000! exactly.

A mathematician goes into a supermarket and buys four items. Using a calculator she multiplies the cost instead of adding them. How can her answer be the same as the total at the till?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

I'm thinking of a number. When my number is divided by 5 the remainder is 4. When my number is divided by 3 the remainder is 2. Can you find my number?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Substitution and Transposition all in one! How fiendish can these codes get?

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

Can you find what the last two digits of the number $4^{1999}$ are?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you find any perfect numbers? Read this article to find out more...

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

The sum of the first 'n' natural numbers is a 3 digit number in which all the digits are the same. How many numbers have been summed?

A game that tests your understanding of remainders.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you find any two-digit numbers that satisfy all of these statements?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Explore the relationship between simple linear functions and their graphs.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Can you find a way to identify times tables after they have been shifted up?