Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Can you explain the strategy for winning this game with any target?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Can you work out what size grid you need to read our secret message?

Is there an efficient way to work out how many factors a large number has?

How many noughts are at the end of these giant numbers?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Substitution and Transposition all in one! How fiendish can these codes get?

Make a line of green and a line of yellow rods so that the lines differ in length by one (a white rod)

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Have you seen this way of doing multiplication ?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find the highest power of 11 that will divide into 1000! exactly.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Can you find a way to identify times tables after they have been shifted up?

Can you find what the last two digits of the number $4^{1999}$ are?

Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?