What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Square It game for an adult and child. Can you come up with a way of always winning this game?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

What is the greatest number of squares you can make by overlapping three squares?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Reasoning about the number of matches needed to build squares that share their sides.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Make a cube out of straws and have a go at this practical challenge.

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exploring and predicting folding, cutting and punching holes and making spirals.

Exchange the positions of the two sets of counters in the least possible number of moves

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you cut up a square in the way shown and make the pieces into a triangle?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the child walking home from school?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Granma T?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Make a flower design using the same shape made out of different sizes of paper.