Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.
A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.
Exchange the positions of the two sets of counters in the least possible number of moves
I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?
This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .
A game for 2 people. Take turns joining two dots, until your opponent is unable to move.
This task depends on groups working collaboratively, discussing and reasoning to agree a final product.
Here is a solitaire type environment for you to experiment with. Which targets can you reach?
A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?
An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.
You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.
How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?
At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?
A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.
An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?
A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?
Show that among the interior angles of a convex polygon there cannot be more than three acute angles.
The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.
If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.
A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .
Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.
Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.
Find all the ways to cut out a 'net' of six squares that can be folded into a cube.
Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.
Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?
Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube so that the surface area of the remaining solid is the same as the surface area of the original?
Draw a pentagon with all the diagonals. This is called a pentagram. How many diagonals are there? How many diagonals are there in a hexagram, heptagram, ... Does any pattern occur when looking at. . . .
ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.
Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?
What can you see? What do you notice? What questions can you ask?
ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?
Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?
A huge wheel is rolling past your window. What do you see?
Imagine you are suspending a cube from one vertex and allowing it to hang freely. What shape does the surface of the water make around the cube?
On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?
ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.
Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?
Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?
Can you maximise the area available to a grazing goat?
These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?
Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .
When dice land edge-up, we usually roll again. But what if we didn't...?
The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?
This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.
Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?
What is the minimum number of squares a 13 by 13 square can be dissected into?
In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?
Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?
Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?