Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Simple models which help us to investigate how epidemics grow and die out.

How would you go about estimating populations of dolphins?

Work with numbers big and small to estimate and calulate various quantities in biological contexts.

This problem explores the biology behind Rudolph's glowing red nose.

Get some practice using big and small numbers in chemistry.

To investigate the relationship between the distance the ruler drops and the time taken, we need to do some mathematical modelling...

In which Olympic event does a human travel fastest? Decide which events to include in your Alternative Record Book.

Many physical constants are only known to a certain accuracy. Explore the numerical error bounds in the mass of water and its constituents.

Starting with two basic vector steps, which destinations can you reach on a vector walk?

Could nanotechnology be used to see if an artery is blocked? Or is this just science fiction?

Examine these estimates. Do they sound about right?

10 graphs of experimental data are given. Can you use a spreadsheet to find algebraic graphs which match them closely, and thus discover the formulae most likely to govern the underlying processes?

In Fill Me Up we invited you to sketch graphs as vessels are filled with water. Can you work out the equations of the graphs?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Which dilutions can you make using only 10ml pipettes?

How do you write a computer program that creates the illusion of stretching elastic bands between pegs of a Geoboard? The answer contains some surprising mathematics.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Formulate and investigate a simple mathematical model for the design of a table mat.

Estimate these curious quantities sufficiently accurately that you can rank them in order of size

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Can you work out which processes are represented by the graphs?

Use trigonometry to determine whether solar eclipses on earth can be perfect.

Work with numbers big and small to estimate and calculate various quantities in physical contexts.

Which units would you choose best to fit these situations?

Andy wants to cycle from Land's End to John o'Groats. Will he be able to eat enough to keep him going?

Work out the numerical values for these physical quantities.

Use your skill and judgement to match the sets of random data.

Work with numbers big and small to estimate and calculate various quantities in biological contexts.

Explore the relationship between resistance and temperature

Analyse these beautiful biological images and attempt to rank them in size order.

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

When you change the units, do the numbers get bigger or smaller?

Various solids are lowered into a beaker of water. How does the water level rise in each case?

Can you draw the height-time chart as this complicated vessel fills with water?

Imagine different shaped vessels being filled. Can you work out what the graphs of the water level should look like?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Can you rank these sets of quantities in order, from smallest to largest? Can you provide convincing evidence for your rankings?

Is there a temperature at which Celsius and Fahrenheit readings are the same?

Is it cheaper to cook a meal from scratch or to buy a ready meal? What difference does the number of people you're cooking for make?

Is it really greener to go on the bus, or to buy local?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.