Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Impedance Can Be Complex!

Part 1:

$P = IV$

I = $\frac{E}{Z_1 + Z_2} = \frac{E}{Z_1cos\theta + Z_2cos\phi + i(Z_1sin\theta + Z_2sin\phi)}$

|I| = $\frac{E}{\sqrt{(Z_1cos\theta + Z_2cos\phi)^2 + (Z_1sin\theta + Z_2sin\phi)^2}}$

The real power transferred to $Z_2$: P = I^2 R

P = $ I^2 Z_2cos \phi = \frac{E^2 Z_2cos \phi}{Z_1^2 + Z_2^2 + 2Z_1Z_2(cos \theta cos \phi + sin \theta \phi)}$= $ \frac{E^2 Z_2cos \phi}{Z_1^2 + Z_2^2 + 2Z_1Z_2cos( \theta - \phi )} $

Part 2:

To find the maximum power; we can differentiate the power expression with respect to $Z_2$ and set the derivative equal to zero.

$\frac{dP}{dZ_2} = \frac{d}{dZ_2}\frac{E^2 Z_2cos \phi}{Z_1^2 + Z_2^2 + 2Z_1Z_2cos( \theta - \phi )}$

Let U = $E^2 Z_2cos \phi$

Let V = $ Z_1^2 + Z_2^2 + 2Z_1Z_2cos( \theta - \phi ) $

$\frac{dP}{dZ_2} = \frac{VU' - UV'}{V^2}$

V' = $ 2Z_2 + 2Z_1 cos ( \theta - \phi)$

U' = $E^2 cos \phi$

Substituting thses values into the expression and setting it equal to zero we find that:

$Z_1 = Z_2$

For maximum power transfer between load and source we must therefore match the internal impedance of the load with the impedance of the source

Or search by topic

Age 16 to 18

Challenge Level

- Problem
- Getting Started
- Student Solutions

Part 1:

$P = IV$

I = $\frac{E}{Z_1 + Z_2} = \frac{E}{Z_1cos\theta + Z_2cos\phi + i(Z_1sin\theta + Z_2sin\phi)}$

|I| = $\frac{E}{\sqrt{(Z_1cos\theta + Z_2cos\phi)^2 + (Z_1sin\theta + Z_2sin\phi)^2}}$

The real power transferred to $Z_2$: P = I^2 R

P = $ I^2 Z_2cos \phi = \frac{E^2 Z_2cos \phi}{Z_1^2 + Z_2^2 + 2Z_1Z_2(cos \theta cos \phi + sin \theta \phi)}$= $ \frac{E^2 Z_2cos \phi}{Z_1^2 + Z_2^2 + 2Z_1Z_2cos( \theta - \phi )} $

Part 2:

To find the maximum power; we can differentiate the power expression with respect to $Z_2$ and set the derivative equal to zero.

$\frac{dP}{dZ_2} = \frac{d}{dZ_2}\frac{E^2 Z_2cos \phi}{Z_1^2 + Z_2^2 + 2Z_1Z_2cos( \theta - \phi )}$

Let U = $E^2 Z_2cos \phi$

Let V = $ Z_1^2 + Z_2^2 + 2Z_1Z_2cos( \theta - \phi ) $

$\frac{dP}{dZ_2} = \frac{VU' - UV'}{V^2}$

V' = $ 2Z_2 + 2Z_1 cos ( \theta - \phi)$

U' = $E^2 cos \phi$

Substituting thses values into the expression and setting it equal to zero we find that:

$Z_1 = Z_2$

For maximum power transfer between load and source we must therefore match the internal impedance of the load with the impedance of the source