
problem
Golden fractions
Find the link between a sequence of continued fractions and the
ratio of succesive Fibonacci numbers.
Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate a(n) and b(n) for n<8. What do you notice about these sequences? (ii) Find a relation between a(p) and b(q). (iii) Prove your conjectures.
Here are some circle bugs to try to replicate with some elegant programming, plus some sequences generated elegantly in LOGO.
Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?