Creating and manipulating expressions and formulae

  • How Many Miles To Go?
    problem

    How many miles to go?

    Age
    11 to 14
    Challenge level
    filled star filled star filled star
    How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?
  • Mind Reading
    problem

    Mind reading

    Age
    11 to 14
    Challenge level
    filled star empty star empty star
    Think of a number, add one, double it, take away 3, add the number you first thought of, add 7, divide by 3 and take away the number you first thought of. You should now be left with 2. How do I know?
  • Leonardo's Problem
    problem

    Leonardo's problem

    Age
    14 to 18
    Challenge level
    filled star filled star filled star
    A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?
  • Sums of Squares
    problem

    Sums of squares

    Age
    16 to 18
    Challenge level
    filled star empty star empty star
    Can you prove that twice the sum of two squares always gives the sum of two squares?
  • Pick's Theorem
    problem

    Pick's theorem

    Age
    14 to 16
    Challenge level
    filled star filled star empty star

    Polygons drawn on square dotty paper have dots on their perimeter (p) and often internal (i) ones as well. Find a relationship between p, i and the area of the polygons.

  • Top-Heavy Pyramids
    problem

    Top-heavy pyramids

    Age
    11 to 14
    Challenge level
    filled star filled star filled star
    Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.
  • Terminology
    problem

    Terminology

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?
  • Snookered
    problem

    Snookered

    Age
    14 to 18
    Challenge level
    filled star filled star empty star
    In a snooker game the brown ball was on the lip of the pocket but it could not be hit directly as the black ball was in the way. How could it be potted by playing the white ball off a cushion?
  • Algebra from Geometry
    problem

    Algebra from geometry

    Age
    11 to 16
    Challenge level
    filled star empty star empty star
    Account of an investigation which starts from the area of an annulus and leads to the formula for the difference of two squares.
  • Think of Two Numbers
    problem

    Think of two numbers

    Age
    11 to 14
    Challenge level
    filled star filled star empty star
    Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?