
Same length trains
How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?
How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?
Six balls are shaken. You win if at least one red ball ends in a corner. What is the probability of winning?
Seven balls are shaken. You win if the two blue balls end up touching. What is the probability of winning?
A game in which players take it in turns to try to draw quadrilaterals (or triangles) with particular properties. Is it possible to fill the game grid?
A game in which players take it in turns to turn up two cards. If they can draw a triangle which satisfies both properties they win the pair of cards. And a few challenging questions to follow...
Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.
In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?
This polar equation is a quadratic. Plot the graph given by each factor to draw the flower.