Can you each work out what shape you have part of on your card? What will the rest of it look like?

This task develops spatial reasoning skills. By framing and asking questions a member of the team has to find out what mathematical object they have chosen.

What shape is made when you fold using this crease pattern? Can you make a ring design?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Investigate these hexagons drawn from different sized equilateral triangles.

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

What mathematical words can be used to describe this floor covering? How many different shapes can you see inside this photograph?

See if you can anticipate successive 'generations' of the two animals shown here.

Can you reproduce the design comprising a series of concentric circles? Test your understanding of the realtionship betwwn the circumference and diameter of a circle.

Thinking of circles as polygons with an infinite number of sides - but how does this help us with our understanding of the circumference of circle as pi x d? This challenge investigates. . . .

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

An activity making various patterns with 2 x 1 rectangular tiles.

Look at the mathematics that is all around us - this circular window is a wonderful example.

This article describes investigations that offer opportunities for children to think differently, and pose their own questions, about shapes.

Can you sketch triangles that fit in the cells in this grid? Which ones are impossible? How do you know?

This interactivity allows you to sort logic blocks by dragging their images.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

'What Shape?' activity for adult and child. Can you ask good questions so you can work out which shape your partner has chosen?

Can Jo make a gym bag for her trainers from the piece of fabric she has?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Explore patterns based on a rhombus. How can you enlarge the pattern - or explode it?

Recreating the designs in this challenge requires you to break a problem down into manageable chunks and use the relationships between triangles and hexagons. An exercise in detail and elegance.

Use the isometric grid paper to find the different polygons.

In LOGO circles can be described in terms of polygons with an infinite (in this case large number) of sides - investigate this definition further.

The challenge is to produce elegant solutions. Elegance here implies simplicity. The focus is on rhombi, in particular those formed by jointing two equilateral triangles along an edge.

Can you recreate squares and rhombuses if you are only given a side or a diagonal?

These pictures were made by starting with a square, finding the half-way point on each side and joining those points up. You could investigate your own starting shape.

Find out what a "fault-free" rectangle is and try to make some of your own.

This article gives an wonderful insight into students working on the Arclets problem that first appeared in the Sept 2002 edition of the NRICH website.

Two circles are enclosed by a rectangle 12 units by x units. The distance between the centres of the two circles is x/3 units. How big is x?

A floor is covered by a tessellation of equilateral triangles, each having three equal arcs inside it. What proportion of the area of the tessellation is shaded?

Follow the instructions and you can take a rectangle, cut it into 4 pieces, discard two small triangles, put together the remaining two pieces and end up with a rectangle the same size. Try it!

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Can you work out the area of the inner square and give an explanation of how you did it?

Read all about the number pi and the mathematicians who have tried to find out its value as accurately as possible.

Bluey-green, white and transparent squares with a few odd bits of shapes around the perimeter. But, how many squares are there of each type in the complete circle? Study the picture and make. . . .

With one cut a piece of card 16 cm by 9 cm can be made into two pieces which can be rearranged to form a square 12 cm by 12 cm. Explain how this can be done.

Identical squares of side one unit contain some circles shaded blue. In which of the four examples is the shaded area greatest?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Explain how the thirteen pieces making up the regular hexagon shown in the diagram can be re-assembled to form three smaller regular hexagons congruent to each other.

This article for pupils gives some examples of how circles have featured in people's lives for centuries.

Which is a better fit, a square peg in a round hole or a round peg in a square hole?