Use the interactivities to complete these Venn diagrams.

Move just three of the circles so that the triangle faces in the opposite direction.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to sort these numbers into sets. Can you give each set a name?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you complete this jigsaw of the multiplication square?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

An interactive activity for one to experiment with a tricky tessellation

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to find out how many quarter turns the man must rotate through to look like each of the pictures.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

If there are 3 squares in the ring, can you place three different numbers in them so that their differences are odd? Try with different numbers of squares around the ring. What do you notice?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Incey Wincey Spider game for an adult and child. Will Incey get to the top of the drainpipe?

Train game for an adult and child. Who will be the first to make the train?

These interactive dominoes can be dragged around the screen.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?