How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

What happens when you try and fit the triomino pieces into these two grids?

How many different rhythms can you make by putting two drums on the wheel?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you find all the different triangles on these peg boards, and find their angles?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different triangles can you make on a circular pegboard that has nine pegs?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Train game for an adult and child. Who will be the first to make the train?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

There are three versions of this challenge. The idea is to change the colour of all the spots on the grid. Can you do it in fewer throws of the dice?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Move just three of the circles so that the triangle faces in the opposite direction.

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!