Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How many trains can you make which are the same length as Matt's, using rods that are identical?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Move just three of the circles so that the triangle faces in the opposite direction.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

What happens when you try and fit the triomino pieces into these two grids?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many different rhythms can you make by putting two drums on the wheel?

Can you find all the different ways of lining up these Cuisenaire rods?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

If you hang two weights on one side of this balance, in how many different ways can you hang three weights on the other side for it to be balanced?

Twenty four games for the run-up to Christmas.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Find out what a "fault-free" rectangle is and try to make some of your own.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Can you use the interactive to complete the tangrams in the shape of butterflies?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Can you find all the different triangles on these peg boards, and find their angles?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!