Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

If you have only four weights, where could you place them in order to balance this equaliser?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Here is a chance to play a version of the classic Countdown Game.

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Use the information about Sally and her brother to find out how many children there are in the Brown family.

Can you make a train the same length as Laura's but using three differently coloured rods? Is there only one way of doing it?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

How many trains can you make which are the same length as Matt's, using rods that are identical?

Can you use the numbers on the dice to reach your end of the number line before your partner beats you?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Place the numbers 1 to 6 in the circles so that each number is the difference between the two numbers just below it.

Choose four of the numbers from 1 to 9 to put in the squares so that the differences between joined squares are odd.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make one big triangle so the numbers that touch on the small triangles add to 10.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

How many different triangles can you make on a circular pegboard that has nine pegs?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Can you find all the different triangles on these peg boards, and find their angles?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Complete the squares - but be warned some are trickier than they look!

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

Move just three of the circles so that the triangle faces in the opposite direction.

An interactive activity for one to experiment with a tricky tessellation

How many different rhythms can you make by putting two drums on the wheel?