Slick summing

Watch the video to see how Charlie works out the sum. Can you adapt his method?

Exploring and noticing Working systematically Conjecturing and generalising Visualising and representing Reasoning, convincing and proving
Being curious Being resourceful Being resilient Being collaborative

Problem

Slick Summing printable worksheet

 

In the video below, Charlie works out $1+2+3+4+5+6+7+8+9+10$.

Can you see how his method works?

How could you adapt his method to work out the following sums?

$1 + 2 + 3 + \dots + 19 + 20$

$1 + 2 + 3 + \dots + 99 + 100$

$40 + 41 + 42 + \dots + 99 + 100$

Can Charlie's method be adapted to sum sequences that don't go up in ones?

$1 + 3 + 5 + \dots + 17 + 19$

$2 + 4 + 6 + \dots + 18 + 20$

$42 + 44 + 46 + \dots + 98 + 100$

Can you find an expression for the following sum?

$1 + 2 + 3 + \dots + (n - 1) + n$



 

Notes and Background

If you enjoyed this problem you may be interested to read the article Clever Carl, which tells the story of the young Gauss working on sums like the ones in this problem. You may also be interested in this video which shows a dozen proofs of the formula of the sum of the first n positive integers.