Charlie is working out $1+2+3+4+5+6+7+8+9+10$

$$
\begin{array}{r}
1+2+3+4+5+6+7+8+9+10 \\
+\begin{array}{crrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\hline 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11 \\
& & 10 \times & 11=110
\end{array}
\end{array}
$$

So: $1+2+3+4+5+6+7+8+9+10=55$

Can you see how his method works?
How could you adapt his method to work out the following sums?

$$
\begin{gathered}
1+2+3+\cdots+19+20 \\
1+2+3+\cdots+99+100 \\
40+41+42+\cdots+99+100
\end{gathered}
$$

Can Charlie's method be adapted to sum sequences that don't go up in ones?

$$
\begin{gathered}
1+3+5+\cdots+17+19 \\
2+4+6+\cdots+18+20 \\
42+44+46+\cdots+98+100
\end{gathered}
$$

Can you find an expression for the following sum?

$$
1+2+3+\cdots+(n-1)+n
$$

