

Charlie is working out 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

	1 +	2 +	3 +	- 4 -	+ 5 +	- 6 -	+ 7	+ 8	+ 9	+ 10	
	1	2	3	4	5	6	7	8	9	10	
4	<u>10</u>	9	8	7	6	5	4	3	2	1	
	11	11	11	11	11	11	11	11	11	11	
$= 10 \times 11 = 110$											
So: 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55											

Can you see how his method works?

How could you adapt his method to work out the following sums?

 $1 + 2 + 3 + \dots + 19 + 20$ $1 + 2 + 3 + \dots + 99 + 100$ $40 + 41 + 42 + \dots + 99 + 100$

Can Charlie's method be adapted to sum sequences that don't go up in ones?

 $1 + 3 + 5 + \dots + 17 + 19$ 2 + 4 + 6 + \dots + 18 + 20 $42 + 44 + 46 + \dots + 98 + 100$

Can you find an expression for the following sum?

 $1 + 2 + 3 + \dots + (n-1) + n$