Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# Kite in a Square

### Why do this problem?

### Possible approach

### Key questions

### Possible support

Possible extension

###

Or search by topic

Age 14 to 18

Challenge Level

- Problem
- Getting Started
- Student Solutions
- Teachers' Resources

Students often find geometric proofs quite intractable. In this problem, three different ways of proving the same result are presented, jumbled up, so that students can engage with the proofs without having to start from scratch.

*This printable worksheet may be useful: Kite in a Square*

*These printable cards for sorting may be useful: Coordinates, Similar Triangles, Pythagoras*

Show the image from the problem.

"ABCD is a square. M is the midpoint of AB. What fraction of the total area is shaded?"

Give students some time to have a go at the problem. While they are working, circulate and see the methods they are trying.

After a while, bring the class together again and acknowledge that the answer may not be immediately obvious.

"I've been given the methods used by three different people. Unfortunately each method has got jumbled up. Can you put the statements in the right order to build a logical argument?"

Hand out envelopes with each method (Coordinates, Similar Triangles, Pythagoras) to pairs or threes. Coordinates is the most accessible method, and Pythagoras the most
challenging. *It is a good idea to print each method on different coloured card to avoid them getting muddled up.*

"With your partner, make sense of each step and put the cards in the right order.

Make sure you agree with each other, or that you can convince each other, that the order is right.

Once you've completed the task, can you recreate each method for your partner without looking at the cards?"

Once students have spent enough time engaging with the three methods, making sense of them and recreating them for themselves, bring the class together. Invite pairs students to present each method to the class, and finally discuss the merits and disadvantages of each.

The interactive proof sorters which are available can be used as an alternative to the printable cards, or for students to check their suggested arrangements of the cards.

For Coordinates method:

- what are the equations of the lines?
- where do they intersect?

For Similar Figures method:

- which angles are the same?
- what lengths do we know?

For Pythagoras method:

- where are the right angles?
- what lengths do we know?

Start by drawing a square on dotty paper (2 by 2 to start with) and explain that vertices and mid-points can be joined with straight lines.

Challenge students to find the different fractions of the square that can be shaded.

Possible extension

Enclosing Squares offers a follow-up activity linked to Coordinates.

Take a Square offers a follow-up activity linked to Similar Figures.

Pythagoras Proofs offers a follow-up activity linked to Pythagoras.