Kite in a Square 3

Rearrange the cards to explain how to find what fraction of the total area is shaded.

The area of $\triangle D M C=2$ sq units. The area of $\triangle D F C=1 \mathrm{sq}$ unit.	A
$\triangle E H F$ is right-angled so we have $(E H)^{2}+(H F)^{2}=(E F)^{2}$	B
The areas of $\triangle D F E, \triangle C F G$ and the shaded area $M E F G$ are equal, and the total area of them is 1 , so each must have an area of $\frac{1}{3}$ sq units.	C
Area of $\triangle M E F=\frac{1}{2}(1 \times E H)=\frac{1}{2}\left(\frac{E F}{\sqrt{2}}\right)$	D
By Pythagoras, $D F$ has length $\sqrt{2}$.	E
The total area of the square is 4 sq units, so the shaded area is $\frac{1}{12}$ the area of the whole square.	F
Area of $\triangle D F E=\frac{D F \times E F}{2}=\frac{\sqrt{2} \times E F}{2}=\frac{E F}{\sqrt{2}}$ sq units	G
So the shaded area MEFG is equal to the area of $\triangle D F E$	H
Assume that the sides of the square are each 2 units long. Thus, $D J$ and $F J$ are each 1 unit long.	I
The area of the arrowhead MDFC is equal to the difference between the areas of $\triangle D M C$ and $\triangle D F C$; therefore this area is 1 sq unit.	J
By symmetry, area of $\triangle C F G$ is the same as the area of $\triangle D F E$	K
$E H=H F \Rightarrow 2(E H)^{2}=(E F)^{2}$ therefore $E H=\frac{E F}{\sqrt{2}}$	L
Area of $M E F G$ is twice the area of $\triangle M E F$, therefore area $M E F G=\frac{E F}{\sqrt{2}}$	M

