Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Take a look at the multiplication square. The first eleven triangle numbers have been identified. Can you see a pattern? Does the pattern continue?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

Can you find a way to identify times tables after they have been shifted up or down?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

Alison, Bernard and Charlie have been exploring sequences of odd and even numbers, which raise some intriguing questions...

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Can you figure out how sequences of beach huts are generated?

Can you find the connections between linear and quadratic patterns?

Can you work out what fraction of this grid is shaded?

This tiled floor has 109 purple tiles. How many tiles are there altogether?