Skip to main content
### Number and algebra

### Geometry and measure

### Probability and statistics

### Working mathematically

### For younger learners

### Advanced mathematics

# A Fine Thing?

## You may also like

### Route to Root

### Divided Differences

Or search by topic

Age 16 to 18

Challenge Level

FBALLQUQMNLQUQSLQUQKWQWMOFBQUANKIQDIQUALKRGKRALYOWARQWQVQIC QDRUAQFQDKUQLZYQDRAQDIOLFONAWWKDIAVNABKWVQDKIFKUAWQLFBMOSBAQ NLYGNKFANWIMUVQNARLLQUQWFMWBAAVFBAKNWKUKLQNKFYFMFBAIQUALGQW WMMDNAIMSDKHARFBAYGANAKDILORARKDFBASADOWIQUALOWQLMDSGKFBQLVQI QKDFBAWYWFAUQDQFONQAMJLKDDQAOWWMUAMDAADINYVFKDSQUAWWQSAIQDU QCARAINYVFKMDUMNARKJJKIOLFZYIBMMWKDSODOWOQLGMNRWQDRNAUMXKDS VODIFOQFKMDQDRFBAWVQIKDSZAFGAADGMNRWWAAKJYMOIQDGMNCMOFFBAUAF BMROWARJMNADINYVFKDSFBKWUAWWQSAFBKDCQZMOFWAEOADIAWKJYMOSAFW FOIC

A sequence of numbers x1, x2, x3, ... starts with x1 = 2, and, if you know any term xn, you can find the next term xn+1 using the formula: xn+1 = (xn + 3/xn)/2 . Calculate the first six terms of this sequence. What do you notice? Calculate a few more terms and find the squares of the terms. Can you prove that the special property you notice about this sequence will apply to all the later terms of the sequence? Write down a formula to give an approximation to the cube root of a number and test it for the cube root of 3 and the cube root of 8. How many terms of the sequence do you have to take before you get the cube root of 8 correct to as many decimal places as your calculator will give? What happens when you try this method for fourth roots or fifth roots etc.?

When in 1821 Charles Babbage invented the `Difference Engine' it was intended to take over the work of making mathematical tables by the techniques described in this article.