Ratio and proportion

  • Pumpkin Pie Problem
    problem

    Pumpkin pie problem

    Age
    7 to 11
    Challenge level
    filled star filled star empty star

    Peter wanted to make two pies for a party. His mother had a recipe for him to use. However, she always made 80 pies at a time. Did Peter have enough ingredients to make two pumpkin pies?

  • Racing odds
    problem

    Racing odds

    Age
    11 to 14
    Challenge level
    filled star empty star empty star
    In a race the odds are: 2 to 1 against the rhinoceros winning and 3 to 2 against the hippopotamus winning. What are the odds against the elephant winning if the race is fair?
  • Semi-Square
    problem

    Semi-square

    Age
    14 to 16
    Challenge level
    filled star filled star filled star
    What is the ratio of the area of a square inscribed in a semicircle to the area of the square inscribed in the entire circle?
  • Oh for the mathematics of yesteryear
    problem

    Oh for the mathematics of yesteryear

    Age
    11 to 14
    Challenge level
    filled star filled star filled star
    A garrison of 600 men has just enough bread ... but, with the news that the enemy was planning an attack... How many ounces of bread a day must each man in the garrison be allowed, to hold out 45 days against the siege of the enemy?
  • Pent
    problem

    Pent

    Age
    14 to 18
    Challenge level
    filled star filled star empty star
    The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.
  • Rhombus in Rectangle
    problem

    Rhombus in rectangle

    Age
    14 to 16
    Challenge level
    filled star filled star empty star
    Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.
  • Around and Back
    problem

    Around and back

    Age
    14 to 16
    Challenge level
    filled star filled star filled star
    A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns around and heads back to the starting point where he meets the runner who is just finishing his first circuit. Find the ratio of their speeds.
  • Five circuits, seven spins
    problem

    Five circuits, seven spins

    Age
    16 to 18
    Challenge level
    filled star filled star empty star
    A circular plate rolls inside a rectangular tray making five circuits and rotating about its centre seven times. Find the dimensions of the tray.
  • Do unto Caesar
    problem

    Do unto Caesar

    Age
    11 to 14
    Challenge level
    filled star filled star filled star

    At the beginning of the night three poker players; Alan, Bernie and Craig had money in the ratios 7 : 6 : 5. At the end of the night the ratio was 6 : 5 : 4. One of them won $1 200. What were the assets of the players at the beginning of the evening?

  • Sitting Pretty
    problem

    Sitting pretty

    Age
    14 to 16
    Challenge level
    filled star filled star empty star

    A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?