Show that the arithmetic mean, geometric mean and harmonic mean of
a and b can be the lengths of the sides of a right-angles triangle
if and only if a = bx^3, where x is the Golden Ratio.
Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you
notice when successive terms are taken? What happens to the terms
if the fraction goes on indefinitely?
a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number.
(b) Prove that 11^{10}-1 is divisible by 100.
All strange numbers are prime. Every one digit prime number is
strange and a number of two or more digits is strange if and only
if so are the two numbers obtained from it by omitting either its
first or its last digit. Find all strange numbers.
I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?
If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.
I start with a red, a blue, a green and a yellow marble. I can
trade any of my marbles for three others, one of each colour. Can I
end up with exactly two marbles of each colour?