Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What is the greatest number of squares you can make by overlapping three squares?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the different ways of lining up these Cuisenaire rods?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A game for two people that can be played with pencils and paper. Combine your knowledge of coordinates with some strategic thinking.

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

Train game for an adult and child. Who will be the first to make the train?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you explain the strategy for winning this game with any target?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?