Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

How many models can you find which obey these rules?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many different triangles can you make on a circular pegboard that has nine pegs?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

What is the best way to shunt these carriages so that each train can continue its journey?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

If you had 36 cubes, what different cuboids could you make?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?