There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Using the statements, can you work out how many of each type of rabbit there are in these pens?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Number problems at primary level that require careful consideration.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Can you substitute numbers for the letters in these sums?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you work out some different ways to balance this equation?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This dice train has been made using specific rules. How many different trains can you make?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you replace the letters with numbers? Is there only one solution in each case?

Can you make square numbers by adding two prime numbers together?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Can you use this information to work out Charlie's house number?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

Have a go at balancing this equation. Can you find different ways of doing it?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

You have 5 darts and your target score is 44. How many different ways could you score 44?