A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How many different triangles can you make on a circular pegboard that has nine pegs?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

A few extra challenges set by some young NRICH members.

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

You need to find the values of the stars before you can apply normal Sudoku rules.