Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

My dice has inky marks on each face. Can you find the route it has taken? What does each face look like?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This article for primary teachers suggests ways in which to help children become better at working systematically.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Can you use this information to work out Charlie's house number?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There are lots of different methods to find out what the shapes are worth - how many can you find?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

This dice train has been made using specific rules. How many different trains can you make?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.