This task follows on from Build it Up and takes the ideas into three dimensions!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

You have 5 darts and your target score is 44. How many different ways could you score 44?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

How many trapeziums, of various sizes, are hidden in this picture?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Can you use this information to work out Charlie's house number?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.