Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

The clues for this Sudoku are the product of the numbers in adjacent squares.

A few extra challenges set by some young NRICH members.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

My dice has inky marks on each face. Can you find the route it has taken? What does each face look like?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

How many different symmetrical shapes can you make by shading triangles or squares?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

You need to find the values of the stars before you can apply normal Sudoku rules.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.