Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

How many different triangles can you make on a circular pegboard that has nine pegs?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A Sudoku that uses transformations as supporting clues.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

A few extra challenges set by some young NRICH members.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This Sudoku requires you to do some working backwards before working forwards.

Two sudokus in one. Challenge yourself to make the necessary connections.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

How will you go about finding all the jigsaw pieces that have one peg and one hole?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?