What happens when you round these three-digit numbers to the nearest 100?

Have a go at balancing this equation. Can you find different ways of doing it?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Can you replace the letters with numbers? Is there only one solution in each case?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you substitute numbers for the letters in these sums?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

In how many ways can you stack these rods, following the rules?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

What could the half time scores have been in these Olympic hockey matches?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?