Can you find a way of counting the spheres in these arrangements?

Can you find ways of joining cubes together so that 28 faces are visible?

What happens when you try and fit the triomino pieces into these two grids?

Can you make a 3x3 cube with these shapes made from small cubes?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Watch this animation. What do you see? Can you explain why this happens?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Make one big triangle so the numbers that touch on the small triangles add to 10.

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you visualise what shape this piece of paper will make when it is folded?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This article for teachers describes a project which explores the power of storytelling to convey concepts and ideas to children.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Which of these dice are right-handed and which are left-handed?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you fit the tangram pieces into the outlines of the convex shapes?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?