Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

An activity making various patterns with 2 x 1 rectangular tiles.

What do these two triangles have in common? How are they related?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many models can you find which obey these rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This activity investigates how you might make squares and pentominoes from Polydron.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you visualise what shape this piece of paper will make when it is folded?

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What is the greatest number of squares you can make by overlapping three squares?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Reasoning about the number of matches needed to build squares that share their sides.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Delight your friends with this cunning trick! Can you explain how it works?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.