A follow-up activity to Tiles in the Garden.

If I use 12 green tiles to represent my lawn, how many different ways could I arrange them? How many border tiles would I need each time?

Investigate these hexagons drawn from different sized equilateral triangles.

Polygonal numbers are those that are arranged in shapes as they enlarge. Explore the polygonal numbers drawn here.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Can you find out how the 6-triangle shape is transformed in these tessellations? Will the tessellations go on for ever? Why or why not?

While we were sorting some papers we found 3 strange sheets which seemed to come from small books but there were page numbers at the foot of each page. Did the pages come from the same book?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Bernard Bagnall describes how to get more out of some favourite NRICH investigations.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

We need to wrap up this cube-shaped present, remembering that we can have no overlaps. What shapes can you find to use?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

What do these two triangles have in common? How are they related?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What is the largest cuboid you can wrap in an A3 sheet of paper?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Here are many ideas for you to investigate - all linked with the number 2000.

Investigate the area of 'slices' cut off this cube of cheese. What would happen if you had different-sized block of cheese to start with?

Can you continue this pattern of triangles and begin to predict how many sticks are used for each new "layer"?

In my local town there are three supermarkets which each has a special deal on some products. If you bought all your shopping in one shop, where would be the cheapest?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you make these equilateral triangles fit together to cover the paper without any gaps between them? Can you tessellate isosceles triangles?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Take a look at these data collected by children in 1986 as part of the Domesday Project. What do they tell you? What do you think about the way they are presented?

Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

How many faces can you see when you arrange these three cubes in different ways?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

In this investigation we are going to count the number of 1s, 2s, 3s etc in numbers. Can you predict what will happen?

Why does the tower look a different size in each of these pictures?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Bernard Bagnall looks at what 'problem solving' might really mean in the context of primary classrooms.

Explore Alex's number plumber. What questions would you like to ask? What do you think is happening to the numbers?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

This challenge asks you to investigate the total number of cards that would be sent if four children send one to all three others. How many would be sent if there were five children? Six?