Try out the lottery that is played in a far-away land. What is the chance of winning?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What is the greatest number of squares you can make by overlapping three squares?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Use the interactivity or play this dice game yourself. How could you make it fair?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you find all the different triangles on these peg boards, and find their angles?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

How many different triangles can you make on a circular pegboard that has nine pegs?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Find out what a "fault-free" rectangle is and try to make some of your own.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.