Use the interactivity or play this dice game yourself. How could you make it fair?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you logically construct these silhouettes using the tangram pieces?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the chairs?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Can you find all the different ways of lining up these Cuisenaire rods?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

These interactive dominoes can be dragged around the screen.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

What is the greatest number of squares you can make by overlapping three squares?