Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

If you have only four weights, where could you place them in order to balance this equaliser?

An interactive activity for one to experiment with a tricky tessellation

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Work out the fractions to match the cards with the same amount of money.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

What is the greatest number of squares you can make by overlapping three squares?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you find all the different ways of lining up these Cuisenaire rods?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Can you fit the tangram pieces into the outline of this telephone?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you fit the tangram pieces into the outlines of the candle and sundial?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?