These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Can you draw a square in which the perimeter is numerically equal to the area?

This activity investigates how you might make squares and pentominoes from Polydron.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

The pages of my calendar have got mixed up. Can you sort them out?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

In this matching game, you have to decide how long different events take.

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

An investigation that gives you the opportunity to make and justify predictions.

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

These practical challenges are all about making a 'tray' and covering it with paper.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

An activity making various patterns with 2 x 1 rectangular tiles.

How many different triangles can you make on a circular pegboard that has nine pegs?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?