Let's suppose that you are going to have a magazine which has 16 pages of A5 size. Can you find some different ways to make these pages? Investigate the pattern for each if you number the pages.

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you use this information to work out Charlie's house number?

What could the half time scores have been in these Olympic hockey matches?

Investigate the different ways you could split up these rooms so that you have double the number.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

How many trapeziums, of various sizes, are hidden in this picture?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?