Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?
Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?
Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?
10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?
Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?
Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?
What is the best way to shunt these carriages so that each train can continue its journey?
An activity making various patterns with 2 x 1 rectangular tiles.
Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?
These practical challenges are all about making a 'tray' and covering it with paper.
Design an arrangement of display boards in the school hall which fits the requirements of different people.
Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?
How many models can you find which obey these rules?
Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.
How can you put five cereal packets together to make different shapes if you must put them face-to-face?
In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?
What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?
Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?
How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?
A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?
Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?
You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?
The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?
Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.
How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.
Can you find all the different ways of lining up these Cuisenaire rods?
A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?
This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .
How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?
What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?
A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?
Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?
Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?
Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.
Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.
Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.
Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?
In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?
The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?
Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.
On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?
These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.
Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.
Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.
Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?
How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?
Try out the lottery that is played in a far-away land. What is the chance of winning?
This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?