Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Can you find all the different ways of lining up these Cuisenaire rods?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Find out what a "fault-free" rectangle is and try to make some of your own.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This challenge extends the Plants investigation so now four or more children are involved.

Try out the lottery that is played in a far-away land. What is the chance of winning?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

In this matching game, you have to decide how long different events take.

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This dice train has been made using specific rules. How many different trains can you make?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?