Can you find all the different triangles on these peg boards, and find their angles?

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This challenge extends the Plants investigation so now four or more children are involved.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

In this matching game, you have to decide how long different events take.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you find all the different ways of lining up these Cuisenaire rods?

Find out what a "fault-free" rectangle is and try to make some of your own.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?