You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you replace the letters with numbers? Is there only one solution in each case?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you use this information to work out Charlie's house number?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find all the ways to get 15 at the top of this triangle of numbers?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

Find out what a "fault-free" rectangle is and try to make some of your own.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Find out about Magic Squares in this article written for students. Why are they magic?!

This task follows on from Build it Up and takes the ideas into three dimensions!

The Zargoes use almost the same alphabet as English. What does this birthday message say?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

These eleven shapes each stand for a different number. Can you use the multiplication sums to work out what they are?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?