Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?
10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?
Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?
Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?
You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?
Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.
Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?
Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?
What is the best way to shunt these carriages so that each train can continue its journey?
Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?
What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?
Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?
An activity making various patterns with 2 x 1 rectangular tiles.
Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.
These practical challenges are all about making a 'tray' and covering it with paper.
Design an arrangement of display boards in the school hall which fits the requirements of different people.
Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?
Make your own double-sided magic square. But can you complete both sides once you've made the pieces?
Can you find all the different ways of lining up these Cuisenaire rods?
Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?
Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?
In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?
A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?
Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?
If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?
How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?
What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?
In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?
A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?
In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?
A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.
Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?
Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.
There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?
This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?
Each clue in this Sudoku is the product of the two numbers in adjacent cells.
In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?
Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.
Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?
These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.
Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.
Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?
When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.
How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?
My cube has inky marks on each face. Can you find the route it has taken? What does each face look like?
How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?
Try out the lottery that is played in a far-away land. What is the chance of winning?
I like to walk along the cracks of the paving stones, but not the outside edge of the path itself. How many different routes can you find for me to take?
Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?