Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

What happens when you round these three-digit numbers to the nearest 100?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Number problems at primary level that require careful consideration.

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

This challenge focuses on finding the sum and difference of pairs of two-digit numbers.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

An investigation that gives you the opportunity to make and justify predictions.

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

The discs for this game are kept in a flat square box with a square hole for each disc. Use the information to find out how many discs of each colour there are in the box.

Can you replace the letters with numbers? Is there only one solution in each case?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Can you use this information to work out Charlie's house number?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?