My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Can you draw a square in which the perimeter is numerically equal to the area?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

These rectangles have been torn. How many squares did each one have inside it before it was ripped?

Can you find which shapes you need to put into the grid to make the totals at the end of each row and the bottom of each column?

Can you use the information to find out which cards I have used?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

These practical challenges are all about making a 'tray' and covering it with paper.

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

I was in my car when I noticed a line of four cars on the lane next to me with number plates starting and ending with J, K, L and M. What order were they in?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

What is the date in February 2002 where the 8 digits are palindromic if the date is written in the British way?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

This task follows on from Build it Up and takes the ideas into three dimensions!

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the different ways you could split up these rooms so that you have double the number.

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

Can you find all the ways to get 15 at the top of this triangle of numbers?