Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How many models can you find which obey these rules?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

These practical challenges are all about making a 'tray' and covering it with paper.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Make a mobius band and investigate its properties.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Can you fit the tangram pieces into the outline of Mai Ling?

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Can you fit the tangram pieces into the outline of these rabbits?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Did you know mazes tell stories? Find out more about mazes and make one of your own.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?