Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you logically construct these silhouettes using the tangram pieces?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you use the interactive to complete the tangrams in the shape of butterflies?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the greatest number of squares you can make by overlapping three squares?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.