This activity investigates how you might make squares and pentominoes from Polydron.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

These practical challenges are all about making a 'tray' and covering it with paper.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

An activity making various patterns with 2 x 1 rectangular tiles.

How many models can you find which obey these rules?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Follow these instructions to make a five-pointed snowflake from a square of paper.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Can you make the birds from the egg tangram?

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Here is a version of the game 'Happy Families' for you to make and play.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of Granma T?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

What do these two triangles have in common? How are they related?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.